2020年05月17日

コンピュータ囲碁プログラム「GLOBIS-AQZ」をソースからビルドする - Ubuntu編

1. 前提となる環境
インストールするコンピュータの仕様は以下のとおり。

--
Dell Inspiron 14 7472 Core i7モデル 18Q42P
OS:Ubuntu 18.04 LTS 日本語 Remix
CPU:インテル Core i7-8550U (4Mキャッシュ、最大4.0GHz)
GPU:NVIDIA GeForce MX150 GDDR5 2GB
メモリー:8GB DDR4 2400MHz(最大16GB)
保存装置:128GB SSD (Windows10 Home 64bit) + 1TB 5400rpm HDD (Ubuntu 18.04 LTS 日本語 Remix)
--

2. 「AQ」インストールの準備とソースコードの取得
「GLOBIS-AQZ」は「AQ」のバージョンとしては「v4.0.0」ということになり、「AQ」GitHubレポジトリでソースコードが公開されています。
このソースコードをLinuxでビルドするための要件は、「AQ」GitHubレポジトリの日本語の説明によれば、以下のとおりです。

--
5-1. Linux

Requirements
・gcc
・make
・CUDA Toolkit 10.x
・TensorRT 7.0.0

Makefile内のCUDA・TensorRTのインクルードパス・ライブラリパスを確認し、makeしてください。
make
--

これから「AQ」をソースコードからビルドするにあたっては、あらかじめ「「Ubuntu 18.04 LTS 日本語 Remix」に「CUDA 10.0」+「TensorRT 7.0.0」をインストールする」の記述のとおりに「CUDA 10.0」+「TensorRT 7.0.0」環境が構築されていることを前提としています。
この手順にしたがって「CUDA」をインストールした場合、最終的には「CUDA」関連ライブラリは以下のように配置されています。

・Ubuntu 18.04 LTS 日本語 Remix
・CUDA 10.0 -> /usr/local/cuda-10.0
・cuDNN 7.6.5 -> /usr/lcoal/cuda-10.0
・NCCL 2.6.5 -> /usr/local/nccl-2.6
・TensorRT 7.0.0 -> /usr/local/TensorRT-7.0.0

ここまでの準備が終わったら、ホームディレクトリ直下の「~/AQ」ディレクトリにインストールすることにして、「AQ」のソースコードを取得します。

$ cd
$ git clone https://github.com/ymgaq/AQ AQ


これで、「~/AQ」に「AQ」のソースコードが取得され、ビルド作業をすすめる準備がととのいました。

3. 「AQ」のインストール
hatakazuは「CUDA」環境を構築するにあたってdebパッケージを使ってないので、「ubuntu 18.04 LTS」に標準的なdebパッケージを使ってインストールした場合とくらべると、「CUDA」関連ライブラリのインストール場所が異なっている部分があります。
そこで、「Makefile内のCUDA・TensorRTのインクルードパス・ライブラリパスを確認し、makeしてください。」という指示にしたがって、「AQ」ディレクトリにある「Makefile」を編集します。
ようは「CUDA」および「TensorRT」のインクルードパスを「-I」接頭辞をつけて、「CUDA」および「TensorRT」のライブラリパスを「-L」接頭辞をつけて、そして「cudart」「nvparsers」「nvonnxparser」「nvinfer」各ライブラリを「-l」接頭辞をつけて指定してやればいいわけなので、Linux用のパス指定部分を以下のように変更しました。
# TensorRT
LDFLAGS += -L/usr/local/cuda-10.0/lib64 -L/usr/local/TensorRT-7.0.0/lib -lpthread -lcudart -lnvinfer -lnvonnxparser -lnvparsers
INCLUDES += -I/usr/local/cuda-10.0/include -I/usr/local/TensorRT-7.0.0/include
OUTFILE = AQ


「Makefile」ファイルの編集がおわったら、ビルド作業にすすみます。
$ cd AQ
$ make


ビルド処理は問題なく完了し、「~/AQ」ディレクトリのなかに実行バイナリ「AQ」が生成しています。

4. 「AQ」の設定
以上の作業が完了したら、「~/AQ」ディレクトリにGTP思考エンジンの実行ファイル「AQ」と、設定ファイル「config.txt」が置かれている状態になります。
このあとは「コンピュータ囲碁プログラム「GLOBIS-AQZ」のインストールと使いかた - Ubuntu編」のLinux用バイナリ配布ファイルを利用するときとまったくおなじように、「config.txt」を編集して「AQ」の設定をおこない、「GoGui」や「Sabaki」などGTP対応囲碁GUIへの登録作業をすすめればO.K.です。

5. 問題点
じっさいには、「AQ」を上記手順にしたがってソースコードからビルドしたあと「GoGui」や「Sabaki」と連携させて呼び出そうとすると、「building engine ... UFFParser: Could not open /home/username/AQ/engine/model_jp.uff」というエラーが発生して起動できません。
これは、「AQ」GitHubレポジトリの日本語の説明の以下の部分に書かれている「UFF(Universal File Format)形式のファイル」が見つからない、といっているわけです。
3-2. エンジンファイルの生成

初回起動時に、UFF(Universal File Format)形式のファイルからお手持ちの環境に最適化されたネットワークエンジンを生成します。
このエンジン生成には数分程度かかることがあります。
シリアライズ化されたエンジンファイルがengineフォルダに保存されるので、2回目以降はすぐに起動します。


ほんらいは「AQ」ディレクトリのなかの「engine」ディレクトリに、元になる中国ルール用「model_cn.uff」ファイルおよび日本ルール用「model_jp.uff」ファイルが格納されており、設定内容によってそれぞれ中国ルール用「model_cn.engine」エンジンファイルおよび日本ルール用「model_jp.engine」エンジンファイルを、初回起動時に生成する仕組みになっています。
しかし、現在「AQ」GitHubレポジトリからダウンロードできるソースコードには、これらのUFF形式ファイルがふくまれていません。
なのでhatakazuは、Linux用バイナル配布ファイルを解凍して、そこからこのUFFファイル二つ(中国ルール用「model_cn.uff」および日本ルール用「model_jp.uff」)を抜き出して、「~/AQ/engine」ディレクトリにコピーしました。
それから再度呼び出してみると、今度は「~/AQ/engine」ディレクトリにエンジンファイル(中国ルール用「model_cn.engine」および日本ルール用「model_jp.engine」)が生成され、正常に起動することが確認できました。


posted by hatakazu at 20:47| Comment(0) | 囲碁ソフトのこと | 更新情報をチェックする

コンピュータ囲碁プログラム「GLOBIS-AQZ」のインストールと使いかた - Ubuntu編

グロービスからオープンソース化のアナウンスが出たGLOBIS-AQZ」、「AQ」GitHubレポジトリの日本語の説明によれば、

--
「GLOBIS-AQZ」はDeep Learning技術を利用した囲碁の思考エンジンです。
日本ルール6目半と中国ルール7目半の両方に対応していることが特徴です。

このプログラムはGLOBIS-AQZプロジェクトの成果を利用しています。

GLOBIS-AQZは、開発:株式会社グロービス、山口祐氏、株式会社トリプルアイズ、開発環境の提供:国立研究開発法人 産業技術総合研究所、協力:公益財団法人日本棋院のメンバーによって取り組んでいる共同プロジェクトです。このプログラムは、GLOBIS-AQZでの試算を活用しています。


オープンソース・ソフトウェアですので、どなたでも無料で使用することができます。
対局・解析のためのプログラムですので、「Lizzie」「Sabaki」「GoGui」といったGUIソフトに設定して利用してください。
--

とのこと。
「AQ」のバージョンとしては「v4.0.0」というあつかいになるようなので、ここでは「AQ v4.0.0」として話をすすめていくことにします。
NVIDIA製GPUを搭載したコンピュータに「CUDA」環境を構築して、コンピュータ囲碁プログラムを動かすというのはとても楽しい作業で、いろいろ動かしてはみるんだけど、やっぱりhatakazuはなかでも「AQ」がいちばん好きでずっと応援しています。
開発者が日本人ということで当初より日本ルールに対する親和性が感じられましたが、今回ははっきりと「日本ルール+コミ六目半」対応を打ち出しており、こんなに強いコンピュータ囲碁プログラムが完全日本仕様で動作するというだけでも、日本の囲碁を楽しむすべてのひとにとってかぎりなく大きなプレゼントのようなものだと思っています。

1. 前提となる環境
インストールするコンピュータの仕様は以下のとおり。

--
Dell Inspiron 14 7472 Core i7モデル 18Q42P
OS:Ubuntu 18.04 LTS 日本語 Remix
CPU:インテル Core i7-8550U (4Mキャッシュ、最大4.0GHz)
GPU:NVIDIA GeForce MX150 GDDR5 2GB
メモリー:8GB DDR4 2400MHz(最大16GB)
保存装置:128GB SSD (Windows10 Home 64bit) + 1TB 5400rpm HDD (Ubuntu 18.04 LTS 日本語 Remix)
--

「AQ」をインストールするさいの動作要件は、以下のように記述されています。

・OS : Windows 10, Linux (64-bit)
・GPU : Nvidia's GPU (Compute Capability >3.0)
・CUDA Toolkit 10.0 or 10.2
・TensorRT 7.0.0

64bit版のWindows 10およびLinuxに対応、Compute Capability 3.0以上のNVIDIA製GPUをそなえたコンピュータで、「CUDA 10.0 or 10.2」+「TensorRT 7.0.0」環境が必要とのこと。
これから「AQ v4.0.0」をインストールするにあたっては、あらかじめ「「Ubuntu 18.04 LTS 日本語 Remix」に「CUDA 10.0」+「TensorRT 7.0.0」をインストールする」の記述のとおりに「CUDA 10.0」+「cuDNN 7.6.5」+「TensorRT 7.0.0」環境が構築されていることを前提としています。
なお、「AQ」として公開されているのはGUIをもたない囲碁思考エンジン部分のみなので、グラフィカルに対局や棋譜分析をおこなうためにはGTPを解釈できる囲碁GUIと連携させる必要があります。

2. 「AQ」インストールファイルのダウンロード
「AQ」の現行バージョンは「v4.0.0」で、「AQ」GitHubレポジトリの「Releases」ページから「AQ_linux.tar.gz」をクリックして、Linux用バイナリファイル「AQ_linux.tar.gz」を取得します。

3. 「AQ」のインストール
ダウンロードした「AQ_linux.tar.gz」ファイルを解凍すると、「AQ」ディレクトリが生成します。
この「AQ」ディレクトリのなかにGTP思考エンジン本体である「AQ」や設定ファイル「config.txt」などがふくまれているので、この「AQ」ディレクトリをそのまましかるべき場所(たとえば「~/AQ」など)に設置すれば、インストール作業は終了です。
$ tar zxvf AQ_linux.tar.gz
$ mv AQ ~/


4. 「AQ」の設定
「AQ」フォルダのなかにGTP思考エンジン本体「AQ」といっしょに設定ファイル「config.txt」が置かれており、この設定ファイル「config.txt」の内容を編集することで、次回起動時以降「AQ」のふるまいを変更することができます。
グロービスのオープンソース化アナウンスのなかで大橋拓文六段の「今回オープンソース化されるGLOBIS-AQZは日本ルールでの自己対戦を1千万局以上行いました。これまでほとんどの囲碁AIは中国ルール、コミ7目半でトレーニングされていたので、日本ルール特有のケースとコミ6目半に対応したGLOBIS-AQZは画期的です」というコメントが出ていましたが、「日本ルール」と「コミ六目半」への設定変更は、このファイルにいくつかの変更をほどこすことで実現します。
(じっさいには設定ファイル「config.txt」はいじらず、思考エンジン「AQ」を呼び出すときに、そのつどオプションで指定することもできます。方法は連携する囲碁GUIごとに後述。)
以下に、編集する可能性のある項目だけ抜き出して、各項目の意味と設定方法を記述します。

#### --- Rule --- ####

# Rule of game.
# 0: Chinese, 1: Japanese, 2: Tromp-Tralor
# --rule=0
--rule=1 # 基本ルールを日本式に設定する。

# Komi. Use 6.5 for the Japanese rule.
# --komi=7.5
--komi=6.5 # 日本ルールを選択した場合は、コミも六目半に設定する。

#### --- Time control --- ####

# Main time. (in seconds)
--main_time=0.0 # 秒読みにはいるまえのいわゆる持ち時間を秒単位で入力。秒読みのみの場合は「0」に設定する。

# Japanese byoyomi time. (in seconds)
--byoyomi=3.0 # 持ち時間が切れたあとの秒読みの長さを秒単位で入力。秒読みなし切れ負けの場合は「0」に設定する。

# Threshold of remaining time that AQ returns
# a move without search. (in seconds)
# Used in 'sudden death' time setting.
--emergency_time=15.0 # 秒読みなしの場合に、持ち時間がここで指定した秒数より短くなると、ノータイムで打ちはじめる。

#### --- Search --- ####

# Whether using pondering.
# --use_ponder=on
--use_ponder=off # 相手の手番でも考慮する「ponder」機能を使う場合は「on」に(「Lizzie」で利用する場合は必須)、使わない場合は「off」に設定する。


5. GTP対応囲碁GUIとの連携方法
「AQ」として公開されているのはGUIをもたない囲碁思考エンジン部分のみなので、グラフィカルに対局や棋譜分析をおこなうためにはGTPを解釈できる囲碁GUIと連携させる必要があります。
「AQ」ディレクトリをたとえば「~/AQ」に設置したとして、「/home/username/AQ/AQ」(「username」はお使いのユーザ名)が、囲碁GUIに登録するべきGTP思考エンジンへのパスになります。

5-1. GTP対応囲碁GUI「GoGui」への思考エンジン登録
メニューバーの「プログラム」から「新規プログラム」を選び、あらわれた画面の「コマンド:」欄に囲碁思考エンジンの絶対パスを入力します。
たとえば「AQ」フォルダを「/home/username/AQ」に設置した場合、「コマンド:」欄に入力する絶対パスは「/home/username/AQ/AQ」のようになります。
オプションを指定するときは、「/home/username/AQ/AQ --rule=1 --komi=6.5 --byoyomi=10 --use_ponder=off」のように、一行でつづけて書きます。
上記は「日本ルール、コミ六目半、一手10秒で着手、ponder機能無効」設定の例ですが、「AQ」フォルダにある設定ファイル「config.txt」のほうでおなじように設定していれば、「コマンド:」欄への入力は「AQ」の絶対パスだけで問題ありません。
「OK」ボタンを押下して何度か「待機」をクリックしながら待っていると、ステイタスバーに表示されていた「プログラムの開始中」メッセージが消えて新規プログラム登録画面が開くので、「ラベル:」欄にたとえば「AQ」などと入力して「OK」ボタンを押下します。
これで登録完了となるので、次回以降はメニューバーの「プログラム」 -> 「プログラムの起動」とすすんで「AQ」を選ぶと、「AQ」が起動して対局や棋譜分析に利用できるようになります。
登録した囲碁思考エンジン「AQ」と対局するには、「AQ」を起動した状態で、メニューバーの「対局」から「碁盤サイズ」「置石」「コンピュータの手番」を指定したうえで、「新規対局」をクリックします。
検討したい局面を指定して、そこで「AQ」がどう打つかをみることもできます。
「AQ」を起動したあと、メニューバーから「コンピュータの手番」を「なし」にして、どんどん石を置いていって対象となる局面をつくり、黒番の局面なら「AQに黒を打たせる」、白番の局面なら「AQに白を打たせる」アイコンをクリックします。
そのさい「GTPシェル」を開いておけば、「GoGui」と「AQ」との通信内容が表示されるので、なにか問題がある場合は問題解決の手がかりを得ることができます。

5-2. 「Sabaki」への思考エンジン登録
メニューバーの「Engines」から「Manage Engines」を選び、あらわれた画面で「Add」をクリックします。
「(Unnamed Engine)」と表示されている欄にカーソルをもっていって、わかりやすい表示名を、そして「Path」欄に囲碁思考エンジンの絶対パスを入力します。
たとえば「AQ」フォルダを「/home/username/AQ」に設置した場合、「(Unnamed Engine)」欄にカーソルをもっていって「AQ」と入力、「Path」欄に絶対パス「/home/username/AQ/AQ」を指定します。
「(No arguments)」欄には「--rule=1 --komi=6.5 --byoyomi=10 --use_ponder=off」のようにオプションを指定しますが、「AQ」フォルダにある設定ファイル「config.txt」のほうでおなじように設定していれば、ここは空欄のままで問題ありません。
登録した「AQ」と対局するには、メニューバーの「File」から「New」をクリックします。
開いた画面で「Board Size」「Handicap」「Komi」を指定のうえ、黒番と白番それぞれの担当者を選択します。
自分が担当する手番は「Manual」を選択、「AQ」に担当させる手番は登録されている思考エンジンの表示名から「AQ」を選んで、「OK」ボタンを押下します。
「Sabaki」にほかの囲碁思考エンジンを登録しておいて、「AQ」をほかの思考エンジンと対局させることもできます。
その場合は、対局させる思考エンジンの両方について「ponder」機能を無効化するように設定し、互いの思考をさまたげないかたちで対局をおこなう必要があります。

6. 問題点
インストールして動かしてみて、いくつかうまくいかないところがあるので、備忘として列記しておきます。
解決したら追記します。

6-1. 「Lizzie」への対応
「AQ v4.0.0」から「Lizzie」との連携が可能になり、「Lizzie」のエンジン登録画面で思考エンジン「AQ」へのパスを「--lizzie」スイッチをつけて指定すればO.K.ということになっているが、「--lizzie」オプションをつけてもつけなくても「Lizzie」とはうまく通信できていない。
5月19日追記:「Lizzie」のエンジン登録画面で思考エンジン「AQ」へのパスを「--lizzie」をスイッチをつけて指定することで、「AQ v4.0.0」を「Lizzie」を連携させて、「Lizzie」での棋譜分析に「AQ v4.0.0」を使うことができるようになります。
最初何度やっても通信が確立されなかったのですが、「Lizzie」で先に起動していた「Leela Zero」や「KataGo」がメモリを予約する影響で、「AQ」が必要なメモリを確保できなかったのが原因のようです。
現時点では「AQ」をデフォルトで起動する「エンジン0:」に登録しており、「Lizzie」を立ち上げると同時に「AQ」エンジンが開始されてメモリを割り当ててしまうので、問題は回避できているようです。


参考ウェブページ一覧表(順不同)

「AQ」開発者である山口祐さんのtwitter「https://twitter.com/ymg_aq」
https://github.com/ymgaq/AQ
https://github.com/ymgaq/AQ/releases
https://github.com/ymgaq/AQ/blob/master/README_JP.md
posted by hatakazu at 18:46| Comment(0) | 囲碁ソフトのこと | 更新情報をチェックする

「Ubuntu 18.04 LTS 日本語 Remix」に「CUDA 10.0」+「TensorRT 7.0.0」をインストールする

コンピュータ囲碁プログラムの「GLOBIS-AQZ」が「GitHub」上でオープンソース化されたのを機に、自宅コンピュータの「CUDA」環境を一新することにしました。
Linux用およびWindows用の実行バイナリも配布されているので、基本的にはきちんと要件を満たす「CUDA」環境を構築できれば、問題なく「GLOBIS-AQZ」を動かすことができるはずです。

1. 前提となる環境
インストールするコンピュータの仕様は以下のとおり。

--
Dell Inspiron 14 7472 Core i7モデル 18Q42P
OS:Ubuntu 18.04 LTS 日本語 Remix
CPU:インテル Core i7-8550U (4Mキャッシュ、最大4.0GHz)
GPU:NVIDIA GeForce MX150 GDDR5 2GB
メモリー:8GB DDR4 2400MHz(最大16GB)
保存装置:128GB SSD (Windows10 Home 64bit) + 1TB 5400rpm HDD (Ubuntu 18.04 LTS 日本語 Remix)
--

2. 構築すべき「CUDA」環境
まずは目標設定ですが、最終的には「GLOBIS-AQZ」とFacebook「ELF OpenGo」を動かしたいと思っているので、それらが動作する「CUDA」環境を構築するということになります。
まず、「GLOBIS-AQZ」GitHubレポジトリの記述によれば、「GLOBIS-AQZ」の動作条件は以下のとおりです。

・OS : Windows 10, Linux (64-bit)
・GPU : Nvidia's GPU (Compute Capability >3.0)
・CUDA Toolkit 10.0 or 10.2
・TensorRT 7.0.0

「ELF OpenGo」のほうは、「ELF Opengo」GitHubレポジトリの記載によれば、動作保証しているのは以下の条件です。

・Ubuntu 18.04
・Python 3.7
・GCC 7.3
・CUDA 10.0
・CUDNN 7.3
・NCCL 2.1.2

とりあえずこれで動かしていたので間違いないというだけで、リソースの制限もあるので互換性の検証はしていないそうなので、じっさいにはもっとゆるやかな条件で動作するはずです。
「GLOBIS-AZQ」を動かすためには「TensorRT 7.0.0」の動作要件を満たす必要があるので、「Ubuntu 18.04」に「CUDA 10.0」+「cuDNN 7.6.5」+「NCCL 2.6.4」をインストールして、そこにさらに「TensorRT 7.0.0」を導入するという方針でいきたいと思います。
いずれ試行錯誤することになるとは思いますが、とりあえず以下の構成を基本に、作業をはじめてみることにしました。

・Ubuntu 18.04 LTS
・CUDA 10.0
・cuDNN 7.6.5
・NCCL 2.6.4
・TensorRT 7.0.0

3. NVIDIA製GPU「GeForce MX150」ドライバのインストール
今回作業するコンピュータはNVIDIA製GPU「GeForce MX150」を搭載しているので、まずはこのGPUに対応する最新のドライバをインストールします。
じっさいの作業はむずかしくありませんが、基本的な考えかたを学ぶうえで、「Ubuntu 16.04 LTSにNVIDIA製ドライバーをインストールする3つの方法」がたいへん参考になりました。
「Ubuntu 18.04 LTS 日本語 Remix」で「GeForce MX150」用ドライバをインストールするには、「ソフトウェアとアップデート」を起動し、「追加のドライバー」タブを開きます。
すこし時間がかかって、使用できるドライバの一覧が表示されます。
型式が「NVIDIA Corporation: GP108M [GeForce MX150]」と表示されているのを確認して、いくつか選択肢が示されたら基本的に最新のものを選択します。
2020年5月14日現在の最新バージョンは「440」なので、「NVIDIA driver metapackageをnvidia-driver-440から使用します(プロプライエタリ、検証済み)」ボタンにチェックをいれます。
その状態で「変更の適用」をクリックすると、インストール処理がはじまりますが、終わるまでじゃっかん時間がかかります。
インストール処理が終わったら、「閉じる」をクリックして「ソフトウェアとアップデート」ウインドウを閉じてからシステムを再起動すると、標準の「Nouveau」ドライバではなくNVIDIA製「nvidia-440」ドライバで立ちあがります。
ターミナルをひらいて、「$ nvidia-smi」コマンドをたたいてみて、ドライバのバージョンやGPUの型式が正しく表示されることを確認しておきます。

$ nvidia-smi


デスクトップ関連の設定は、「$ nvidia-settings」コマンドを使って、グラフィカルにおこなうことができます。

$ nvidia-settings


設定内容は「⁠~/.nvidia-settings-rc」に保存され、ログインのたびに「/etc/xdg/autostart/nvidia-settings-autostart.desktop」がこの設定内容を読みこんで、反映させる仕組みです。
NVIDIA製「nvidia-440」ドライバのドキュメント類は、「⁠/usr/share/doc/nvidia-driver-440/index.html」に保管されています。
インストールしたNVIDIA製ドライバのバージョンは、以下のコマンドで確認できます。

$ cat /proc/driver/nvidia/version


4. 「CUDA 10.0」インストールまえの準備作業
「CUDA 10.0」をインストールする方法はいくつかありますが、NVIDIAウェブサイト「CUDA Toolkit 10.0 Archive」ページからUbuntu18.04用runファイル「cuda_10.0.130_410.48_linux.run」をダウンロードして、手動で「CUDA 10.0」をインストールすることにしました。
やってみてからの感想ですが、いろいろなところで互換性の問題がおこりやすい「CUDA」関連ライブラリについては、結果的にrunファイルでインストールして手動でバージョンを管理するのが一番いいと思います。
パッケージの競合という問題がないので、複数のバージョンをインストールしたうえで、パスとショートカットでバージョンを切りかえて使う、ということができるのもおおきなメリットといえます。
GPUドライバのみ別途Ubuntuパッケージで管理したうえで、ツールキットをrunファイルからインストールするだけなら、すべての処理をグラフィカルログイン状態で完了でき、システムに致命的なダメージをあたえかねないむずかしいプロセスもありません。

NVIDIA CUDA Installation Guide for Linux」ページの指示にしたがって、「CUDA 10.0」をインストールするまえに必要な確認作業、準備作業をおこないます。

「CUDA 10.0」に対応したGPUの確認。
$ lspci | grep -i nvidia
01:00.0 3D controller: NVIDIA Corporation GP108M [GeForce MX150] (rev a1)


Linux OSの対応状況確認。「Ubuntu 18.04 LTS」は対応ディストリビューションのリストにはいっているので、このまますすめていきます。
$ uname -m && cat /etc/*release
x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.4 LTS"
NAME="Ubuntu"
VERSION="18.04.4 LTS (Bionic Beaver)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 18.04.4 LTS"
VERSION_ID="18.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=bionic
UBUNTU_CODENAME=bionic


コンパイラの存在およびバージョンを確認。「CUDA 10.0」は「Ubuntu 18.04 LTS」に対応していて、「gcc-7」と 互換性があるので問題ありません。
$ gcc --version
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


Linuxカーネルのバージョン確認。
$ uname -r
4.15.0-99-generic


Linuxカーネルのヘッダと開発キットをインストール。
$ sudo apt-get install linux-headers-$(uname -r)


5. 「CUDA 10.0」のインストール
CUDA Toolkit 10.0 Archive」ページで「Linux」「x86_64」「Ubuntu」「18.04」「runfile (local)」を選択し、「Download Installers for Linux Ubuntu 18.04 x86_64」タブを開きます。
「Base Installer」「Patch 1 (Released May 10, 2019)」それぞれの「Download」ボタンを押して、「cuda_10.0.130_410.48_linux.run」「cuda_10.0.130.1_linux.run」をダウンロードします。
ファイルをダウンロードしたディレクトリへ移動し、ベースインストーラのrunファイルに実行権限を付与してから、「sudo」で実行します。
長い使用許諾書を「Enter」キーを押して全部表示してから「accept」し、「Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?」には、すでに最新ドライバ「440」をインストールしているので「no」と回答します。
「Install the CUDA 10.0 Toolkit?」に「yes」と回答し、「/usr/local/cuda-10.0」にライブラリをインストールのうえ「/usr/local/cuda」からシンボリックリンクをはり、動作確認のためのサンプルファイルは「~/NVIDIA_CUDA-10.0_Samples」にコピーする設定にします。

$ chmod +x cuda_10.0.130_410.48_linux.run
$ sudo ./cuda_10.0.130_410.48_linux.run

Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: no

Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: yes

Enter Toolkit Location
[ default is /usr/local/cuda-10.0 ]:

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: yes

Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: yes

Enter CUDA Samples Location
[ default is /home/username ]:

Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...
Installing the CUDA Samples in /home/username ...
Copying samples to /home/username/NVIDIA_CUDA-10.0_Samples now...
Finished copying samples.

===========
= Summary =
===========

Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-10.0
Samples: Installed in /home/username

Please make sure that
- PATH includes /usr/local/cuda-10.0/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 10.0 functionality to work.
To install the driver using this installer, run the following command, replacing with the name of this run file:
sudo .run -silent -driver

Logfile is /tmp/cuda_install_4325.log


ベースインストーラのインストール処理が終わったら、パッチをあてていきます。
「CUDA 10.0 Toolkit」をインストールしたディレクトリ「/usr/local/cuda-10.0」をターゲットに、パッチファイルを実行するだけです。

chmod +x cuda_10.0.130.1_linux.run
$ sudo ./cuda_10.0.130.1_linux.run

Do you accept the previously read EULA?
accept/decline/quit: accept

Enter CUDA Toolkit installation directory
[ default is /usr/local/cuda-10.0 ]:

Installation complete!
Installation directory: /usr/local/cuda-10.0


ここまでの作業が終わったら、「~/.bashrc」に以下二行を追加して、パスをとおしておきます。

export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}


あるいは、以下のようなかたちで「CUDA_HOME」変数を使ってもO.K.です。

# CUDA 10.0 path
export CUDA_HOME="/usr/local/cuda-10.0"
export PATH=$PATH:$CUDA_HOME/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64:/usr/lib/x86_64-linux-gnu/
export CPATH=$CPATH:$CUDA_HOME/include


いったんターミナルを閉じるか、「$ source ~/.bachrc」コマンドを実行して、パスの変更を反映させます。
いくつかライブラリがたりない(「libGLU.so」「libX11.so」「libXi.so」「libXmu.so」「libGL.so」など)ことがあるので、必要な場合はあとで該当パッケージをインストールし、パスのとおった「/usr/lib」からライブラリファイルへシンボリックリンクをはっておけば問題ありません。

$ sudo apt install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev


ここまででインストール作業は完了です。
以下のコマンドを実行して、インストールした「CUDA 10.0」のバージョンが正しく表示されることを確認します。

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130


問題なければ、サンプルのビルドを実行します。
$ cd ~/NVIDIA_CUDA-10.0_Samples
$ make


ビルド処理が終わったら、「~/NVIDIA_CUDA-10.0_Samples/bin/x86_64/linux/release/」以下に「deviceQuery」が生成するので、それを実行してみます。

$ ~/NVIDIA_CUDA-10.0_Samples/bin/x86_64/linux/release/deviceQuery


デバイスが検出され、「Result = PASS」と表示されていれば、インストールは正常に完了しています。

NVIDIA公式インストール手順書にも記載がありますが、「CUDA Toolkit 10.0」をrunfileを使ってインストールしたときは、以下のスクリプトを実行することでアンインストールできます。

$ sudo /usr/local/cuda-10.0/bin/uninstall_cuda_10.0.pl


なお、今回のインストール方法では必要ありませんが、NVIDIA製ドライバをrunfileを使ってインストールしたときのアンインストールコマンドは以下のとおりです。

$ sudo /usr/bin/nvidia-uninstall


6. 「cuDNN 7.6.5」のインストール
基本的には、NVIDIA公式の「cuDNN Installation Guide」の指示にしたがって、インストール作業をすすめていきます。
まず「cuDNN Download」ページへいき、必要におうじてログインしたうえで、「I Agree To the Terms of the cuDNN Software License Agreement」にチェックをいれます。
ここで「Download cuDNN」をクリックして、「cuDNN Download」ページへ飛び、「Download cuDNN v7.6.5 (November 5th, 2019), for CUDA 10.0」をクリックしてタブをひらきます。
一覧表のなかから「cuDNN Library for Linux」をクリックして、「cudnn-10.0-linux-x64-v7.6.5.32.tgz」をダウンロードします。
ダウンロードしたディレクトリへ移動してファイルを解凍のうえ、「CUDA 10.0」ライブラリをインストールした「/usr/local/cuda-10.0」ディレクトリ以下に配置し、読み込み権限をあたえておきます。

$ tar -xzvf cudnn-10.0-linux-x64-v7.6.5.32.tgz
cuda/include/cudnn.h
cuda/NVIDIA_SLA_cuDNN_Support.txt
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.7
cuda/lib64/libcudnn.so.7.6.5
cuda/lib64/libcudnn_static.a
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*


「cuDNN」ライブラリの配置が完了したら、以下のコマンドで正しく配置されているかどうか確認します。

$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 6
#define CUDNN_PATCHLEVEL 5
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#include "driver_types.h"


インストールしたバージョン「7.6.5」が正しく表示されれば、問題ありません。
最後に、debian package「cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb)」をクリックしてダウンロードした「libcudnn7-doc_7.6.5.32-1+cuda10.0_amd64.deb」からサンプルを抽出、ビルドしてみます。

$ dpkg-deb -x libcudnn7-doc_7.6.5.32-1+cuda10.0_amd64.deb ./
$ cp -r usr/src/cudnn_samples_v7/ ~/
$ cd ~/cudnn_samples_v7/mnistCUDNN
$ make clean && make
$ ./mnistCUDNN

.....
Test passed!


「Test passed!」と表示が出れば、「cuDNN 7.6.5」のインストール作業は完了しています。

7. 「NCCL 2.6.4」のインストール
「NCCL 2.6.4」をインストールするには、NVIDIA公式の「NCCL 2.6.4 Installation Guide」にしたがって、作業をすすめます。

まず「NVIDIA Collective Communications Library (NCCL) Download Page」へいき、必要におうじてログインしたうえで、「I Agree To the Terms of the Software License Agreement」にチェックをいれます。
「Download NCCL v2.6.4, for CUDA 10.0, March 26,2020」をクリックしてタブをひらき、「O/S agnostic local installer」をクリックして、「nccl_2.6.4-1+cuda10.0_x86_64.txz」をダウンロードします。
ダウンロードしたディレクトリに移動したら、ファイルを解凍のうえ、「/usr/local/nccl-2.6」ディレクトリ以下へ配置します。

$ tar xvf nccl_2.6.4-1+cuda10.0_x86_64.txz
nccl_2.6.4-1+cuda10.0_x86_64/include/
nccl_2.6.4-1+cuda10.0_x86_64/include/nccl_net.h
nccl_2.6.4-1+cuda10.0_x86_64/include/nccl.h
nccl_2.6.4-1+cuda10.0_x86_64/lib/
nccl_2.6.4-1+cuda10.0_x86_64/lib/pkgconfig/
nccl_2.6.4-1+cuda10.0_x86_64/lib/pkgconfig/nccl.pc
nccl_2.6.4-1+cuda10.0_x86_64/lib/libnccl.so
nccl_2.6.4-1+cuda10.0_x86_64/lib/libnccl.so.2
nccl_2.6.4-1+cuda10.0_x86_64/lib/libnccl_static.a
nccl_2.6.4-1+cuda10.0_x86_64/lib/libnccl.so.2.6.4
nccl_2.6.4-1+cuda10.0_x86_64/LICENSE.txt
$ sudo cp -r nccl_2.6.4-1+cuda10.0_x86_64 /usr/local/nccl-2.6


最後に、「.bashrc」に以下の行を追加し、「/usr/local/nccl-2.6」へパスをとおしておきます。

export NCCL_ROOT="/usr/local/nccl-2.6"
export CPATH=$CPATH:$NCCL_ROOT/include
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$NCCL_ROOT/lib/
export LIBRARY_PATH=$LIBRARY_PATH:$NCCL_ROOT/lib/


いったんターミナルを閉じるか、「$ source ~/.bachrc」コマンドを実行して、パスの変更を反映させます。

8. 「TensorRT 7.0.0」インストール
「GLOBIS-AZQ」では「TensorRT 7.0.0」がサポートされています。

NVIDIA TensorRT 7.x Download
」ページへいき、必要におうじてログインしたうえで、「I Agree To the Terms of the Software License Agreement」にチェックをいれます。
「Tar File Install Packages」リストのなかの「TensorRT 7.0.0.11 for Ubuntu 18.04 and CUDA 10.0 tar package」をクリックして、「TensorRT-7.0.0.11.Ubuntu-18.04.x86_64-gnu.cuda-10.0.cudnn7.6.tar.gz」ファイルをダウンロードします。
ダウンロードしたディレクトリへ移動して、ファイルを解凍のうえ、適当なディレクトリ(ここでは「/usr/local/TensorRT-7.0.0」)に配置します。

$ tar xzvf TensorRT-7.0.0.11.Ubuntu-18.04.x86_64-gnu.cuda-10.0.cudnn7.6.tar.gz
$ sudo cp -r TensorRT-7.0.0.11 /usr/local/TensorRT-7.0.0


「.bashrc」に以下の行を追加し、「TensorRT-7.0.0」ディレクトリへパスをとおしておきます。

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/TensorRT-7.0.0/lib


あとは、NVIDIA公式の「TensorRT 7.0.0 Installation Guide」の手順どおり、「Python TensorRT」「Python UFF」「Python graphsurgeon」パッケージをインストールします。
「TensorRT 7.0.0」をインストールしたディレクトリの「samples/sampleMNIST/」へいき、サンプルをmakeしてみます。
「TensorRT 7.0.0」をインストールしたディレクトリの「bin」に「sample_mnist」ができているので、これを実行して「TensorRT 7.0.0」が正しくインストールされていることを確認します。
この生成したサンプルファイルをきちんと動かすためには、あらかじめ「data/mnist/download_pgms.py」を実行しておく必要があるかもしれません。

9. 「CUPTI」パス登録
「CUPTI」は「CUDA 10.0 Toolkit」にふくまれているため、あらためてインストールする必要はありませんが、パスをとおしておく必要はあります。
「.bashrc」に以下の一行を追加し、いったんターミナルを閉じるか「$ source ~/.bachrc」コマンドを実行するかして、パスの変更を反映させます。

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/extras/CUPTI/lib64


以上で、「Ubuntu 18.04 TLS」上に「CUDA 10.0」+「TensorRT 7.0.0」環境を構築する作業は完了し、「GLOBIS-AQZ」を導入する準備がととのったことになります。
最初から「GLOBIS-AZQ」を動かすことが目的なので、動作要件となっている「CUDA 10.0」+「TensorRT 7.0.0」環境の構築をめざした記述になっていますが、 より広い意味で現時点で一般性の高い「Ubuntu 18.04 LTS」+「CUDA 10.0」+「cuDNN 7.6.5」+「NCCL 2.6.4」という環境を構築するための手引きとしてもご参照いただければ幸甚です。
上記手順にしたがってインストールすれば、だいたいうまくいくと思いますが、「CUDA」の動作に問題が発生するときは以下のパス設定(上記手順のなかで設定した「CUDA」関連ライブラリに関係する部分のみ)を再確認してみてください。
$ printenv
LD_LIBRARY_PATH=:/usr/local/cuda-10.0/lib64:/usr/local/cuda-10.0/extras/CUPTI/lib64:/usr/local/nccl-2.6/lib/:/usr/local/TensorRT-7.0.0/lib
CPATH=:/usr/local/cuda-10.0/include:/usr/local/nccl-2.6/include
PATH=/usr/local/cuda-10.0/bin



参考ウェブページ一覧表(順不同)
posted by hatakazu at 17:32| Comment(0) | Linuxとか | 更新情報をチェックする

Windows 10上に囲碁勉強環境を構築する - 「ELF OpenGo」編

FACEBOOK Artificial Intelligence」サイトに「ELF OpenGo」ページがあり、そこで二年くらいまえにFacebookが開発してオープンソース化したことで話題になったコンピュータ囲碁プログラム「ELF OpenGo」のWindows用バイナリが公開されています。
今回「GLOBIS-AQZ」を動かすためにWindows 10上に「CUDA 10.2」+「cuDNN 7.6.5」+「TensorRT 7.0.0」環境を構築したのですが、ついでに「ELF OpenGo」も動作確認、あらためてインストールや設定の方法をまとめておくことにしました。

1. 前提となる環境
インストールするコンピュータの仕様は以下のとおり。

--
Dell Inspiron 14 7472 Core i7モデル 18Q42P
OS:Windows10 Home 64bit
CPU:インテル Core i7-8550U (4Mキャッシュ、最大4.0GHz)
GPU:NVIDIA GeForce MX150 GDDR5 2GB
メモリー:8GB DDR4 2400MHz(最大16GB)
保存装置:128GB SSD + 1TB 5400rpm HDD
--

「ELF OpenGo」Windows用バイナリについて、Facebookは以下のように紹介しています。

ELF OpenGo public binary, allowing anyone with a CUDA-enabled GPU to play against the final ELF OpenGo model.


ようは、GPU搭載コンピュータにCUDA環境を構築してあれば、このWindows用バイナリを使ってだれでも「ELF OpenGo」最終バージョンで遊べるよ、と。
これから「ELF OpenGo」をインストールするにあたっては、あらかじめ「Windows 10上に囲碁勉強環境を構築する - 準備編」の記述のとおりに「CUDA 10.2」+「cuDNN 7.6.5」+「TensorRT 7.0.0」環境が構築されていることを前提としています。
CUDA環境はライブラリどうしの互換性問題などむずかしいことが多いのですが、結論からいうとこの公開されている「ELF OpenGo」Windows用バイナリは、「CUDA 10.2」+「cuDNN 7.6.5」環境でまったく問題なく動きました。
しかしじつは、これから入手する圧縮ファイルのなかにはこのGPUバージョンだけではなく、GPUをもたないコンピュータでも動作するCPUバージョンも同梱されています。
なのでじっさいには、「ELF OpenGo」と打ってみたいけど、機械学習だのGPUだのCUDAだのにはまったく興味がない、なんのことやらさっぱりわからないというひとでもトライしてみる価値はあります。
なお、「ELF OpenGo」として公開されているのはGUIをもたない囲碁思考エンジン部分のみなので、グラフィカルに対局や棋譜分析をおこなうためにはGTPを解釈できる囲碁GUIと連携させる必要があります。
「GoGui」と「Sabaki」への導入方法を、下のほうで紹介しています。

2. 「ELF OpenGo」インストールファイルのダウンロード
ELF OpenGo」ページを開き、ちょっとスクロールしていってちょうど真ん中あたりの「Play a game with ELF OpenGo」と書いてある部分を探します。
そこに「ELF OpenGo Windows binary」リンクがあるので、このリンクをクリックして、「ELF OpenGo」Windows用バイナリをふくむ圧縮ファイル「play_opengo_v2.zip」をダウンロードしてください。

3. 「ELF OpenGo」のインストール
ダウンロードした「play_opengo_v2.zip」ファイルを右クリックして「すべて展開」を選ぶと、「play_opengo_v2」フォルダができて、さらにそのなかに「Play ELF OpenGo」フォルダがあります(それ以外のフォルダは無視してください)。
この「Play ELF OpenGo」フォルダのなかに、CUDA環境で走るGPUバージョンと、GPUをもたないコンピュータでも動かすことのできるCPUバージョンが含まれています。
この「Play ELF OpenGo」フォルダをわかりやすい名前(ここでは「ELF-OpenGo」とします)に変えて、しかるべき場所に設置すれば、インストール作業は終了です。
ここでは、ホームディレクトリ「C:\Users\username\」直下に「ELF-OpenGo」フォルダを設置したとするので、「ELF-OpenGo」フォルダへのパスは「C:\Users\username\ELF-OpenGo」となります。

4. 「ELF OpenGo」の設定
「ELF-OpenGo」フォルダをひらくと「README.pdf」ファイルがあるので、そこに書いてあるとおりに設定をすすめていけば、必要な環境さえととのっていれば問題なく「ELF OpenGo」を動かすことができるはずです。
いまどきWindows 10で動いているコンピュータならたいていCPUバージョンは動かせるし、GPUを搭載したコンピュータにCUDA環境を構築している場合は、GPUバージョンのほうも使える可能性があります。
これからさきGPUバージョンの設定方法にもとづいて記述していきますが、CPUバージョンを設定するさいに差異が出るのは、フォルダの名前だけです。
GPUバージョンは「elf_gpu」フォルダに格納されているのに対して、CPUバージョンでは「elf_cpu」フォルダが使われているので、「elf_gpu」の部分をすべて「elf_cpu」に読みかえるだけで、まったくおなじ手順でCPUバージョンを設定することができます。
なお、「ELF OpenGo」の挙動を制御する設定ファイルのようなものは存在しないため、基本的に「ELF OpenGo」のふるまいは囲碁GUIに登録するコマンドによって指定していくことになります。

5. GTP対応囲碁GUIとの連携方法
「ELF OpenGo」として公開されているのはGUIをもたない囲碁思考エンジン部分のみなので、グラフィカルに対局や棋譜分析をおこなうためにはGTPを解釈できる囲碁GUIと連携させる必要があります。
「ELF-OpenGo」フォルダを「C:\Users\username\ELF-OpenGo」(「username」はお使いのユーザ名)に設置したとして、囲碁GUIに登録するべきGTP思考エンジンへの絶対パスは、「C:\Users\username\ELF-OpenGo\elf_gpu\df_console.exe」になります。
確認ですが、この「C:\Users\username\ELF-OpenGo\elf_gpu\df_console.exe」はGPUバージョンを使う場合の絶対パスなので、CPUバージョンでは「elf_gpu」を「elf_cpu」に読みかえた「C:\Users\username\ELF-OpenGo\elf_cpu\df_console.exe」になります。
以下、すべておなじように解釈してください。

5-1. GTP対応囲碁GUI「GoGui」への思考エンジン登録
メニューバーの「プログラム」から「新規プログラム」を選び、あらわれた画面の「コマンド:」欄に囲碁思考エンジンの絶対パスを入力します。
「ELF-OpenGo」フォルダを「C:\Users\username\ELF-OpenGo」に設置した場合、「コマンド:」欄に入力する絶対パスは「C:\Users\username\ELF-OpenGo\elf_gpu\df_console.exe」のようになります。
これに「README.pdf」の指示どおりネットワークファイルへのパスを追加するのですが、それも明示的に絶対パスで指定したほうがいいようなので、「--load C:\Users\username\ELF-OpenGo\elf_gpu\model-v2.bin」となります。
最終的に「コマンド欄:」には、これをすべて一行でつなげて、「C:\Users\username\ELF-OpenGo\elf_gpu\df_console.exe --load C:\Users\username\ELF-OpenGo\elf_gpu\model-v2.bin」と入力します。
「OK」ボタンを押下して何度か「待機」をクリックしながら待っていると、ステイタスバーに表示されていた「プログラムの開始中」メッセージが消えて新規プログラム登録画面が開くので、「ラベル:」欄にたとえば「ELF OpenGo」などと入力して「OK」ボタンを押下します。
これで登録完了となるので、次回以降はメニューバーの「プログラム」 -> 「プログラムの起動」とすすんで「ELF OpenGo」を選ぶと、「ELF OpenGo」が起動して対局や棋譜分析に利用できるようになります。
登録した囲碁思考エンジン「ELF OpenGo」と対局するには、「ELF OpenGo」を起動した状態で、メニューバーの「対局」から「碁盤サイズ」「置石」「コンピュータの手番」を指定したうえで、「新規対局」をクリックします。
検討したい局面を指定して、そこで「ELF OpenGo」がどう打つかをみることもできます。
「ELF OpenGo」を起動したあと、メニューバーから「コンピュータの手番」を「なし」にして、どんどん石を置いていって対象となる局面をつくり、黒番の局面なら「ELF OpenGoに黒を打たせる」、白番の局面なら「ELF OpenGoに白を打たせる」アイコンをクリックします。
そのさい「GTPシェル」を開いておけば、「GoGui」と「ELF OpenGo」との通信内容が表示されるので、なにか問題がある場合は問題解決の手がかりを得ることができます。
なお、「ELF OpenGo」の強さ(=探索の深さ=着手にかかる時間)を制御する、「GoGui」と「Sabaki」に共通の方法を「6. 着手時間の制御」にまとめましたのでご参照ください。

5-2. 「Sabaki」への思考エンジン登録
メニューバーの「Engines」から「Manage Engines」を選び、あらわれた画面で「Add」をクリックします。
「(Unnamed Engine)」と表示されている欄にカーソルをもっていって、わかりやすい表示名を、そして「Path」欄に囲碁思考エンジンの絶対パスを入力します。
たとえば「ELF-OpenGo」フォルダを「C:\Users\username\ELF-OpenGo」に設置した場合、「(Unnamed Engine)」欄にカーソルをもっていって「ELF OpenGo」と入力、「Path」欄に絶対パス「C:\Users\username\ELF-OpenGo\elf_gpu\df_console.exe」を指定します。
「(No arguments)」欄には「README.pdf」の指示どおりネットワークファイルへのパスを記述するので、「--load model-v2.bin」と入力します。
登録した「ELF OpenGo」と対局するには、メニューバーの「File」から「New」をクリックします。
開いた画面で「Board Size」「Handicap」「Komi」を指定のうえ、黒番と白番それぞれの担当者を選択します。
自分が担当する手番は「Manual」を選択、「ELF OpenGo」に担当させる手番は登録されている思考エンジンの表示名から「ELF OpenGo」を選んで、「OK」ボタンを押下します。
「Sabaki」にほかの囲碁思考エンジンを登録しておいて、「ELF OpenGo」をほかの思考エンジンと対局させることもできます。
GPUバージョンを使えるひとは、CPUバージョンと両方をエンジン登録して、「ELF OpenGo GPU」と「ELF OpenGo CPU」を対戦させてみるのもおもしろいかもしれません。
なお、「ELF OpenGo」の強さ(=探索の深さ=着手にかかる時間)を制御する、「GoGui」と「Sabaki」に共通の方法を「6. 着手時間の制御」にまとめましたのでご参照ください。

6. 着手時間の制御
「GoGui」や「Sabaki」を使って「ELF OpenGo」と対局を楽しむ場合、「ELF OpenGo」の着手にかかる時間を直接指定することはできません。
しかし「ELF OpenGo」がどれだけたくさんの可能性を探索するかを数字で指定することができ、コンピュータ囲碁プログラムの場合はそれがそのまま強さの差、そして着手にかかる時間の差としてあらわれてきます。
この探索の深さは「--mcts_rollout_per_thread 800」のようなかたちで指定、最後の数字が大きければ大きいほど強くなる、ひいては着手に時間がかかるということになります。
GPUバージョンでは「--mcts_rollout_per_thread 800」が、CPUバージョンの場合は「--mcts_rollout_per_thread 80」が初期設定値となっているそうで、明示的にほかの数字を指定しないかぎり「ELF OpenGo」はそれぞれの初期設定値にしたがってふるまいます。
なので、この数字を指定するオプションを最初から追加しておき、それを増減させることで着手にかかる時間を制御できるようにしておくといいでしょう。
それを考慮した場合、最終的に「GoGui」の「コマンド欄:」は「C:\Users\username\ELF-OpenGo\elf_gpu\df_console.exe --load C:\Users\username\ELF-OpenGo\elf_gpu\model-v2.bin --mcts_rollout_per_thread 800」に、「Sabaki」の「(No arguments)」欄は「--load model-v2.bin --mcts_rollout_per_thread 800」になります。
何度か数字を増減させながら対局してみて、ちょうどいい時間で着手してくれるよう、コンピュータの性能にあう適切な値を見つけてください。
posted by hatakazu at 11:37| Comment(0) | 囲碁ソフトのこと | 更新情報をチェックする
×

この広告は180日以上新しい記事の投稿がないブログに表示されております。